Analog **Multiplexers/Demultiplexers**

The MC14051B, MC14052B, and MC14053B analog multiplexers are digitally-controlled analog switches. The MC14051B effectively implements an SP8T solid state switch, the MC14052B a DP4T, and the MC14053B a Triple SPDT. All three devices feature low ON impedance and very low OFF leakage current. Control of analog signals up to the complete supply voltage range can be achieved.

Features

- Triple Diode Protection on Control Inputs
- Switch Function is Break Before Make
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Analog Voltage Range $(V_{DD} V_{EE}) = 3.0$ to 18 V Note: V_{EE} must be $\leq V_{SS}$
- Linearized Transfer Characteristics
- Low-noise $12 \text{ nV}/\sqrt{\text{Cycle}}$, f $\geq 1.0 \text{ kHz}$ Typical
- Pin-for-Pin Replacement for CD4051, CD4052, and CD4053
- For 4PDT Switch, See MC14551B
- For Lower R_{ON}, Use the HC4051, HC4052, or HC4053 High-Speed CMOS Devices
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Parameter	Value	Unit					
DC Supply Voltage Range (Referenced to V_{EE} , $V_{SS} \ge V_{EE}$)	-0.5 to +18.0	V					
Input or Output Voltage Range (DC or Transient) (Referenced to V_{SS} for Control Inputs and V_{EE} for Switch I/O)	–0.5 to V _{DD} + 0.5	V					
Input Current (DC or Transient) per Control Pin	+10	mA					
Switch Through Current	±25	mA					
Power Dissipation per Package (Note 1)	500	mW					
Ambient Temperature Range	-55 to +125	°C					
Storage Temperature Range	-65 to +150	°C					
Lead Temperature (8–Second Soldering)	260	°C					
	$\label{eq:constraint} \begin{array}{l} DC \ Supply \ Voltage \ Range \\ (Referenced to \ V_{EE}, \ V_{SS} \ge V_{EE}) \end{array}$	DC Supply Voltage Range (Referenced to V_{EE} , $V_{SS} \ge V_{EE}$) -0.5 to $+18.0$ Input or Output Voltage Range (DC or Transient) (Referenced to V_{SS} for Control Inputs and V_{EE} for Switch I/O) -0.5 to $V_{DD} + 0.5$ Input Current (DC or Transient) 					

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Temperature Derating: "D/DW" Packages: -7.0 mW/°C From 65°C To 125°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS}, V_{EE} or V_{DD}). Unused outputs must be left open.

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

х

А

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

Note: Control Inputs referenced to V_{SS}, Analog Inputs and Outputs reference to V_{EE}. V_{EE} must be \leq V_{SS}.

PIN ASSIGNMENT

-	MC1405	51B		_	MC1405	2B		_	MC1405	3B	
X4 [1●	16	ן V _{DD} ץ	'nΓ	1•	16] V _{DD}	Y1 [1•	16] V _{DD}
X6 [2	15] X2 Y	2	2	15] X2	Y0 [2	15	ΙY
ХC	3	14] X1	ΥŪ	3	14] X1	Z1 [3	14	JX
X7 [4	13] X0 Y	′3 [4	13] X	z C	4	13] X1
X5 [5	12] X3 Y	′1 [5	12] X0	Z0 [5	12] X0
INH [6	11	DA IN	нф	6	11] X3	імн 🛛	6	11	A
V _{EE} [7	10]B V _E	εD	7	10] A	V _{EE} [7	10] B
v _{ss} [8	9]c v _s	ss [8	9] B	v _{ss} [8	9	C

ELECTRICAL CHARACTERISTICS

				–55°C 25		25°C		12	5°C		
Characteristic	Symbol	V _{DD}	Test Conditions	Min	Мах	Min	Typ (Note 2)	Max	Min	Max	Unit
SUPPLY REQUIREMENTS	(Voltages I	Referer	nced to V _{EE})								
Power Supply Voltage Range	V _{DD}	-	$V_{DD} - 3.0 \ge V_{SS} \ge V_{EE}$	3.0	18	3.0	-	18	3.0	18	V
Quiescent Current Per Package	I _{DD}	5.0 10 15	$\begin{array}{l} \mbox{Control Inputs:} \\ \mbox{V}_{in} = \mbox{V}_{SS} \mbox{ or } \mbox{V}_{DD}, \\ \mbox{Switch I/O: } \mbox{V}_{EE} \leq \mbox{V}_{I/O} \leq \\ \mbox{V}_{DD}, \mbox{ and } \mbox{\Delta} \mbox{V}_{switch} \leq \\ \mbox{500 mV} \mbox{ (Note 3)} \end{array}$	_ _ _	5.0 10 20	- -	0.005 0.010 0.015	5.0 10 20		150 300 600	μΑ
Total Supply Current (Dynamic Plus Quiescent, Per Package	I _{D(AV)}	5.0 10 15	$T_A = 25^{\circ}C$ only (The channel component, $(V_{in} - V_{out})/R_{on}$, is not included.)		Typical	((0.07 μA/kHz (0.20 μA/kHz (0.36 μA/kHz	z) f + I _{DD}	1		μΑ
CONTROL INPUTS — INHI	BIT, A, B,	C (Volta	ages Referenced to V _{SS})				1	1		1	
Low–Level Input Voltage	VIL	5.0 10 15	R _{on} = per spec, I _{off} = per spec	- - -	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0		1.5 3.0 4.0	V
High-Level Input Voltage	V _{IH}	5.0 10 15	R _{on} = per spec, I _{off} = per spec	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	- - -	V
Input Leakage Current	l _{in}	15	$V_{in} = 0 \text{ or } V_{DD}$	-	±0.1	-	±0.00001	±0.1	-	1.0	μA
Input Capacitance	C _{in}	_		-	-	-	5.0	7.5	_	-	pF
SWITCHES IN/OUT AND C	OMMONS	OUT/II	N — X, Y, Z (Voltages Refere	nced to	V _{EE})			•		•	
Recommended Peak-to-Peak Voltage Into or Out of the Switch	V _{I/O}	_	Channel On or Off	0	V _{DD}	0	_	V _{DD}	0	V _{DD}	V _{PP}
Recommended Static or Dynamic Voltage Across the Switch (Note 3) (Figure 5)	ΔV_{switch}	-	Channel On	0	600	0	-	600	0	300	mV
Output Offset Voltage	V _{OO}	-	V _{in} = 0 V, No Load	-	-	-	10	-	-	-	μV
ON Resistance	R _{on}	5.0 10 15	$\begin{array}{l} \Delta V_{\text{switch}} \leq 500 \text{ mV} \\ (\text{Note 3) } V_{\text{in}} = V_{\text{IL}} \text{ or } V_{\text{IH}} \\ (\text{Control}), \text{ and } V_{\text{in}} = \\ 0 \text{ to } V_{\text{DD}} \text{ (Switch)} \end{array}$	- - -	800 400 220	- - -	250 120 80	1050 500 280		1200 520 300	Ω
Δ ON Resistance Between Any Two Channels in the Same Package	ΔR_{on}	5.0 10 15		- - -	70 50 45	_ _ _	25 10 10	70 50 45		135 95 65	Ω
Off–Channel Leakage Current (Figure 10)	l _{off}	15	V _{in} = V _{IL} or V _{IH} (Control) Channel to Channel or Any One Channel	-	±100	_	±0.05	±100	-	±1000	nA
Capacitance, Switch I/O	C _{I/O}	-	Inhibit = V _{DD}	-	-	-	10	-	-	-	pF
Capacitance, Common O/I	C _{O/I}	-	Inhibit = V _{DD} (MC14051B) (MC14052B) (MC14053B)		- - -		60 32 17	- - -		- - -	pF
Capacitance, Feedthrough (Channel Off)	C _{I/O}		Pins Not Adjacent Pins Adjacent	-	-	-	0.15 0.47	_ _		_ _	pF

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

2. Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.

For voltage drops across the switch (AV_{switch}) > 600 mV (> 300 mV at high temperature), excessive V_{DD} current may be drawn, i.e. the current out of the switch may contain both V_{DD} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.)

ELECTRICAL CHARACTERISTICS	(Note 4) (C _L = 50 pF, $T_A = 25^{\circ}C$) (V _{EE} \leq V _{SS} unless otherwise indicated)
----------------------------	---

Characteristic	Symbol	V _{DD} – V _{EE} Vdc	Typ (Note 5) All Types	Max	Unit
Propagation Delay Times (Figure 6) Switch Input to Switch Output (R _L = 1 kΩ) MC14051	t _{PLH} , t _{PHL}				ns
$t_{PLH}, t_{PHL} = (0.17 \text{ ns/pF}) \text{ C}_{L} + 26.5 \text{ ns}$ $t_{PLH}, t_{PHL} = (0.08 \text{ ns/pF}) \text{ C}_{L} + 11 \text{ ns}$ $t_{PLH}, t_{PHL} = (0.06 \text{ ns/pF}) \text{ C}_{L} + 9.0 \text{ ns}$		5.0 10 15	35 15 12	90 40 30	
MC14052 t _{PLH} , t _{PHL} = (0.17 ns/pF) C _L + 21.5 ns		5.0	30 12	75 30	ns
t _{PLH} , t _{PHL} = (0.08 ns/pF) C _L + 8.0 ns t _{PLH} , t _{PHL} = (0.06 ns/pF) C _L + 7.0 ns		15	12	25	
MC14053 t_{PLH} , t_{PHL} = (0.17 ns/pF) C _L + 16.5 ns t_{PLH} , t_{PHL} = (0.08 ns/pF) C _L + 4.0 ns t_{PLH} , t_{PHL} = (0.06 ns/pF) C _L + 3.0 ns		5.0 10 15	25 8.0 6.0	65 20 15	ns
Inhibit to Output ($R_L = 10 \text{ k}\Omega$, $V_{EE} = V_{SS}$) Output "1" or "0" to High Impedance, or High Impedance to "1" or "0" Level	t _{PHZ} , t _{PLZ} , t _{PZH} , t _{PZL}				ns
MC14051B		5.0 10 15	350 170 140	700 340 280	
MC14052B		5.0 10 15	300 155 125	600 310 250	ns
MC14053B		5.0 10 15	275 140 110	550 280 220	ns
Control Input to Output ($R_L = 1 \text{ k}\Omega$, $V_{EE} = V_{SS}$) MC14051B	t _{PLH} , t _{PHL}	5.0 10 15	360 160 120	720 320 240	ns
MC14052B		5.0 10 15	325 130 90	650 260 180	ns
MC14053B		5.0 10 15	300 120 80	600 240 160	ns
Second Harmonic Distortion ($R_L = 10K\Omega$, f = 1 kHz) $V_{in} = 5 V_{PP}$	-	10	0.07	-	%
Bandwidth (Figure 7) (R _L = 50 Ω, V _{in} = 1/2 (V _{DD} -V _{EE}) p-p, C _L = 50pF 20 Log (V _{out} /V _{in}) = - 3 dB)	BW	10	17	-	MHz
$\begin{array}{l} \label{eq:starses} \mbox{Off Channel Feedthrough Attenuation (Figure 7)} \\ R_L = 1 K \Omega, \ V_{in} = 1/2 \ (V_{DD} - V_{EE}) \ p-p \\ f_{in} = 4.5 \ \text{MHz} - \ \text{MC14051B} \\ f_{in} = 30 \ \text{MHz} - \ \text{MC14052B} \\ f_{in} = 55 \ \text{MHz} - \ \text{MC14053B} \end{array}$	-	10	-50	-	dB
Channel Separation (Figure 8) $(R_L = 1 k\Omega, V_{in} = 1/2 (V_{DD}-V_{EE}) p-p,$ $f_{in} = 3.0 MHz$	-	10	-50	-	dB
Crosstalk, Control Input to Common O/I (Figure 9) ($R_1 = 1 \ k\Omega$, $R_L = 10 \ k\Omega$ Control t _{TLH} = t _{THL} = 20 ns, Inhibit = V _{SS})	-	10	75	_	mV

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.
4. The formulas given are for the typical characteristics only at 25°C.
5. Data labelled "Typ" is not lo be used for design purposes but In intended as an indication of the IC's potential performance.

Figure 1. Switch Circuit Schematic

Control Inputs										
	Select				ON Switches					
Inhibit	C* B A		Α	MC14051B	MC14	4052B	MC14053E		3B	
0	0	0	0	X0	Y0	X0	Z0	Y0	X0	
0	0	0	1	X1	Y1	X1	Z0	Y0	X1	
0	0	1	0	X2	Y2	X2	Z0	Y1	X0	
0	0	1	1	X3	Y3	Х3	Z0	Y1	X1	
0	1	0	0	X4			Z1	Y0	X0	
0	1	0	1	X5			Z1	Y0	X1	
0	1	1	0	X6			Z1	Y1	X0	
0	1	1	1	X7			Z1	Y1	X1	
1	х	х	х	None						

*Not applicable for MC14052 x = Don't Care

Figure 2. MC14051B Functional Diagram

TRUTH TABLE

TEST CIRCUITS

Figure 5. ΔV Across Switch

Figure 6. Propagation Delay Times, Control and Inhibit to Output

Figure 8. Channel Separation (Adjacent Channels Used For Setup)

NOTE: See also Figures 7 and 8 in the MC14016B data sheet.

Figure 10. Off Channel Leakage

TYPICAL RESISTANCE CHARACTERISTICS

APPLICATIONS INFORMATION

Figure A illustrates use of the on-chip level converter detailed in Figures 2, 3, and 4. The 0-to-5 V Digital Control signal is used to directly control a 9 V_{p-p} analog signal.

The digital control logic levels are determined by V_{DD} and V_{SS} . The V_{DD} voltage is the logic high voltage; the V_{SS} voltage is logic low. For the example, $V_{DD} = +5$ V = logic high at the control inputs; $V_{SS} = GND = 0$ V = logic low.

The maximum analog signal level is determined by V_{DD} and V_{EE} . The V_{DD} voltage determines the maximum recommended peak above V_{SS} . The V_{EE} voltage determines the maximum swing below V_{SS} . For the example, $V_{DD} - V_{SS} = 5$ V maximum swing above V_{SS} ; $V_{SS} - V_{EE} = 5$ V maximum swing below V_{SS} . The example shows a ±4.5 V signal which allows a 1/2 volt margin at each peak. If voltage transients above V_{DD} and/or below V_{EE} are anticipated on the analog channels, external diodes (Dx) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.

The *absolute* maximum potential difference between V_{DD} and V_{EE} is 18.0 V. Most parameters are specified up to 15 V which is the *recommended* maximum difference between V_{DD} and V_{EE} .

Balanced supplies are not required. However, V_{SS} must be greater than or equal to V_{EE} . For example, $V_{DD} = +10$ V, $V_{SS} = +5$ V, and $V_{EE} - 3$ V is acceptable. See the Table below.

Figure B. External Germanium or Schottky Clipping Diodes

POSSIBLE SUPPLY CONNECTIONS

V _{DD} In Volts	V _{SS} In Volts	V _{EE} In Volts	Control Inputs Logic High/Logic Low In Volts	Maximum Analog Signal Range In Volts
+8	0	-8	+8/0	+8 to $-8 = 16 V_{p-p}$
+5	0	-12	+5/0	+5 to $-12 = 17 V_{p-p}$
+5	0	0	+5/0	+5 to 0 = 5 V _{p-p}
+5	0	-5	+5/0	+5 to –5 = 10 V _{p–p}
+10	+5	-5	+10/ +5	+10 to $-5 = 15 V_{p-p}$

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14051BDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14051BDG*	SOIC-16 (Pb-Free)	48 Units / Rail
MC14051BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
NLV14051BDR2G*	SOIC-16 (Pb-Free)	2500 / Tape & Reel
MC14051BDTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
NLV14051BDTR2G*	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
	I	
MC14052BDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14052BDG*	SOIC-16 (Pb-Free)	48 Units / Rail
MC14052BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
NLV14052BDR2G*	SOIC-16 (Pb-Free)	2500 / Tape & Reel
MC14052BDTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
NLV14052BDTR2G*	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
	I	
MC14053BDG	SOIC-16 (Pb-Free)	48 Units / Rail
NLV14053BDG*	SOIC-16 (Pb-Free)	48 Units / Rail
	0010 40	OFOO / Tama & Daal

	(1 D-1 166)	
MC14053BDR2G	SOIC-16 (Pb-Free)	2500 / Tape & Reel
NLV14053BDR2G*	SOIC-16 (Pb-Free)	2500 / Tape & Reel
MC14053BDTR2G	TSSOP-16 (Pb-Free)	2500 / Tape & Reel
NLV14053BDTR2G*	TSSOP-16 (Pb-Free)	2500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
 *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP

Capable.

DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-16		PAGE 1 OF 1			
ON Semiconductor and 🔟 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DOCUMENT NUMBER:	98ASH70247A Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	TSSOP-16	-	PAGE 1 OF 1			
ON Semiconductor and 📖 are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.						

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative